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Abstract

The merit factor of a {−1, 1} binary sequence measures the collective smallness of its non-
trivial aperiodic autocorrelations. Binary sequences with large merit factor are important in
digital communications because they allow the efficient separation of signals from noise. It is
a longstanding open question whether the maximum merit factor is asymptotically unbounded
and, if so, what is its limiting value. Attempts to answer this question over almost sixty years
have identified certain classes of binary sequences as particularly important: skew-symmetric
sequences, symmetric sequences, and anti-symmetric sequences. Using only elementary methods,
we find an exact formula for the mean and variance of the reciprocal merit factor of sequences
in each of these classes, and in the class of all binary sequences. This provides a much deeper
understanding of the distribution of the merit factor in these four classes than was previously
available. A consequence is that, for each of the four classes, the merit factor of a sequence drawn
uniformly at random from the class converges in probability to a constant as the sequence length
increases.

1 Introduction

We consider the class of length n binary sequences An, namely n-tuples (a0, a1, . . . , an−1) (where
n > 1) having all entries aj in {−1, 1}. The aperiodic autocorrelation of the binary sequence A at
shift u is given by

CA(u) :=
n−u−1∑
j=0

ajaj+u for 0 ≤ u < n,

which measures the extent to which the sequence A resembles itself when shifted by u positions.
Binary sequences whose aperiodic autocorrelations for u ̸= 0 are collectively small have played a
prominent role in digital communications engineering since the 1950s, because such sequences allow
the efficient separation of signals from noise; see [11] and [20] for surveys. One of the principal
measures of this collective smallness is how small the peak sidelobe level max0<u<n |CA(u)| can be

J. Jedwab is with Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby BC
V5A 1S6, Canada. He is supported by NSERC. Email: jed@sfu.ca

1



for A ∈ An. Our interest in this paper is the other principal measure of collective smallness, namely
how large the merit factor

F (A) :=
n2

2
∑n−1

u=1 CA(u)2
(1.1)

(defined by Golay [6] in 1972) can be for A ∈ An. See [10] for a survey of the merit factor and its
importance in practical digital communications, and for an equivalent formulation in terms of the
L4 norm of complex-valued polynomials with ±1 coefficients on the unit circle.

Let Fn = maxA∈An F (A) be the maximum value of the merit factor over all binary sequences of
length n. The overall goal in the study of the merit factor is to understand the asymptotic optimal
behaviour by determining the value of lim supn→∞ Fn. In 1966, Littlewood [16, §6] conjectured (us-
ing the L4 norm formulation) that lim supn→∞ Fn is infinite, whereas in 1982 Golay [7] (apparently
without being aware of Littlewood’s prior study) conjectured to the contrary that lim supn→∞ Fn

is finite. This remains unresolved.
Several studies have identified an important subset of An: the class of skew-symmetric length n

binary sequences

SSn :=
{
(a0, a1, . . . , an−1) ∈ An : n is odd and aj = (−1)j+

n−1
2 an−1−j for 0 ≤ j < n

}
. (1.2)

Indeed, Golay [7] conjectured that

lim sup
n→∞

max
A∈SSn

F (A) = lim sup
n→∞

max
A∈An

F (A),

which would imply that to determine the asymptotic largest merit factor it is sufficient to restrict
attention from An to the class SSn. For twenty-five years from 1988, the best known asymptotic
result was the construction of an infinite family of binary sequences having asymptotic merit fac-
tor 6; the same value of 6 is also attained asymptotically by certain families of skew-symmetric
sequences of length 2p + 1 or 4p + 1, where p is a prime congruent to 1 modulo 4 [21, Corollaries
6 and 9]. Then, in 2013, the asymptotic value 6 was improved to the value 1

c−1 > 6.34, where c is

the smallest root of 27x3 − 498x2 + 1164x − 722 [14]. It was subsequently shown that this larger
value can also be attained asymptotically by skew-symmetric sequences [13].

This provides clear motivation to understand the distribution of the merit factor as a function
of length n, in both the classes An and SSn. In this paper, we shall show how to determine the
exact mean and variance of 1

F (A) for a sequence A drawn uniformly at random from An and SSn,
as set out in Theorems 1 and 2.

Theorem 1. Let A be drawn uniformly at random from An. Then

n2 E
( 1

F (A)

)
= n2 − n,

n4Var
( 1

F (A)

)
=

16

3
n3 − 20n2 +

56

3
n− 2 + 2(−1)n.

Theorem 2. Let n be odd and let A be drawn uniformly at random from SSn. Then

n2 E
( 1

F (A)

)
= n2 − 3n+ 2,

n4Var
( 1

F (A)

)
=

32

3
n3 − 88n2 +

592

3
n− 512

⌊
n− 1

8

⌋
− 512

⌊
n− 1

12

⌋
− 88 + 16(−1)

n−1
2 (n− 3).
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Two other subsets of An arise naturally in the study of the merit factor: the class of symmetric
length n binary sequences

Sn := {(a0, a1, . . . , an−1) ∈ An : aj = an−1−j for 0 ≤ j < n} , (1.3)

and the class of anti-symmetric length n binary sequences

ASn := {(a0, a1, . . . , an−1) ∈ An : n is even and aj = −an−1−j for 0 ≤ j < n} . (1.4)

For example, the asymptotic value 6 for F (A) is attained not only by skew-symmetric sequences
but also by binary sequences formed by prepending the element 1 to a sequence g of length n−1 and
then cyclically rotating by ⌊n/4⌋ positions, for certain symmetric g when n is a prime congruent
to 1 modulo 4 and for certain anti-symmetric g when n is a prime congruent to 3 modulo 4 [9].
Furthermore, every skew-symmetric binary sequence can be written as the interleaving of sequences
f and g, where one of f, g is symmetric and the other is anti-symmetric. By choosing such sequences
f and g each to have large merit factor, Golay and Harris [8] constructed examples of sequences in
SSn with large merit factor for each odd n in the range 71 ≤ n ≤ 117; these values of the merit
factor were later shown to attain the actual maximum over SSn for all but two values of n in this
range [18]. In contrast to the class An, the merit factor of sequences in Sn is known to be bounded
above: Fredman, Saffari and Smith [5] proved that F (A) ≤ 0.1048−1 < 10 for all A ∈ Sn.

We shall provide a counterpart to Theorems 1 and 2 by determining the exact mean and variance
of 1

F (A) for a sequence A drawn uniformly at random from either of the classes Sn and ASn, as set

out in Theorem 3 (in which I[ · ] denotes the indicator function of an event).

Theorem 3. Let f be drawn uniformly at random from Sn, or (for even n) from ASn. Then

n2 E
( 1

F (A)

)
= 2n2 − 3n+

1− (−1)n

2
,

n4Var
( 1

F (A)

)
=


32n3 − 216n2 + 304n+ 256

⌊
n

6

⌋
+ 256 · I[n mod 6 = 4] for n even,

32n3 − 144n2 + 160n− 576

⌊
n− 1

4

⌋
− 512

⌊
n− 1

6

⌋
− 48 for n odd.

The expected value of 1
F (A) , as given in Theorems 1, 2, and 3, was previously calculated for

An [19] (often attributed instead to [17]), for SSn [2], and for Sn and ASn [3]. An expression
for Var( 1

F (A)) for the class An was stated in [1], but was incorrectly calculated (see the discussion

following the proof of Theorem 1). Katz and Ramirez [15], with reference to a preprint version
[12] of the current paper, recently calculated E

(
1

F (A) − E( 1
F (A))

)p
for p = 2, 3, 4, where A is drawn

uniformly at random from An, and in the case p = 2 obtained the same variance expression as
in Theorem 1. None of the variance expressions for the classes SSn, Sn, and ASn was previously
known, and their derivation is considerably more difficult than that for An. We find it surprising
and remarkable that these exact closed form expressions exist, and that they can be determined
precisely using only elementary methods. These expressions provide a much deeper understanding
of the distribution of the merit factor in the four classes An, SSn, Sn, ASn than was previously
available. The expressions in Theorem 1 have been verified numerically for n ≤ 40, and those in
Theorems 2 and 3 for n ≤ 75.

Application of Chebyshev’s inequality to Theorems 1, 2 and 3 gives the following corollary.
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Corollary 4. Let A be drawn uniformly at random from An or (for odd n) from SSn, and let B
be drawn uniformly at random from Sn or (for even n) from ASn. Then, as n → ∞,

F (A) → 1 in probability, and F (B) → 1
2 in probability.

Of the asymptotic results given in Corollary 4, only that for An was previously known [4]; our
techniques are very different. Corollary 4 highlights the difficulty of trying to determine which
sequences of length n attain the largest merit factor: they have zero density within their respective
class as n → ∞. Indeed, a value of lim supn→∞ F (A) larger than 6.34 can be attained for A in An

and SSn [14, 13] (as already noted), and a value of lim supn→∞ F (B) equal to 1.5 can be attained
for B in Sn and ASn (by taking the offset fraction in the main result of [9] to be 0).

In Section 2 we give some preliminary results for use in later calculations. In Sections 3, 4,
and 5 we prove Theorems 1, 3, and 2, respectively.

2 Summation and calculation identities

Throughout the paper, we denote the indicator function of the event X by I[X], and write Iu :=
I[u odd]. We shall make use of the following summation identities, of which (2.1) to (2.5) can
readily be verified by considering the cases n even and n odd separately; (2.6) follows from (2.4);
(2.7) can be verified by substituting u = 2U + 1 and considering the cases n mod 4 = 1 and
n mod 4 = 3 separately; (2.8) follows from (2.7) by substituting v = 2V + 1; (2.9) can be verified
by considering the cases n mod 8 = 1, 3, 5, 7 separately; and (2.10) can be verified by considering
each of the congruence classes of n modulo 6 separately:

n−1∑
u=1

⌊
u

2

⌋
=

⌊
n

2

⌋⌊
n− 1

2

⌋
, (2.1)

3
n−1∑
u=1

⌊
u

2

⌋⌊
u− 2

2

⌋
= 2

⌊
n

2

⌋(
n− 2

2

)⌈
n− 4

2

⌉
, (2.2)

n−1∑
u=1

Iu =

⌊
n

2

⌋
, (2.3)

2

n−1∑
u=1

Iu

(
u− 1

2

)
=

⌊
n

2

⌋⌊
n− 2

2

⌋
, (2.4)

3
n−1∑
u=1

Iu

(
u− 1

2

)(
u− 3

2

)
=

⌊
n

2

⌋⌊
n− 2

2

⌋⌊
n− 4

2

⌋
, (2.5)

2
n−1∑
u,v=1

IuI[u+ 2v > 2n] =

⌊
n

2

⌋⌊
n− 2

2

⌋
, (2.6)

n−1∑
u=n+1

2

Iu

(
2u− n− 1

2

)
=

⌊
n− 1

4

⌋⌊
n− 3

4

⌋
for n odd, (2.7)

n−1∑
u,v=1

IuIvI[2u+ v > 2n] =

⌊
n− 1

4

⌋⌊
n− 3

4

⌋
for n odd, (2.8)
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n−1∑
u=⌈ 3n+1

4 ⌉
Iu =

⌊
n− 1

8

⌋
for n odd, (2.9)

n−1∑
u=⌈ 2n+1

3 ⌉
Iu =

⌊
n

6

⌋
+ I[n mod 6 = 4]. (2.10)

We next obtain expressions for n2 E( 1
F (A)) and n4Var( 1

F (A)) for A = (a0, a1, . . . , an−1) ∈ An.
We write

Cu :=

u−1∑
j=0

ajaj+n−u for 0 < u < n, (2.11)

regarding the sequence entries aj as random variables each taking values in {1,−1}.

Proposition 5. Let A = (a0, a1, . . . , an−1) ∈ An be drawn at random according to an arbitrary
distribution on the sequence entries aj. Then

n2 E
( 1

F (A)

)
= 2E, (2.12)

n4Var
( 1

F (A)

)
= 4(V − E2), (2.13)

where

E =
n−1∑
u=1

EC2
u, (2.14)

V =
n−1∑
u,v=1

E
(
C2
uC

2
v

)
. (2.15)

Proof. Since Cu = CA(n− u), by the definition (1.1) of F (A) we have

n2

F (A)
= 2

n−1∑
u=1

C2
u. (2.16)

Take the expectation to obtain (2.12). Take the variance and substitute from (2.14) to obtain (2.13).

3 The class An

In this section, we use Proposition 5 to prove Theorem 1 for the class An of binary sequences.

Proof of Theorem 1. Let A = (a0, a1, . . . , an−1) ∈ An, and regard the sequence entries aj as inde-
pendent random variables that each take the values 1 and −1 with probability 1

2 . Substitute the
definition (2.11) of Cu into expression (2.14) for E to give

E =

n−1∑
u=1

u−1∑
j,k=0

E(ajaj+n−uakak+n−u).
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Since the ai are independent, the expectation term in the triple sum is nonzero exactly when
{j, j +n− u, k, k+n− u} = {i, i, i′, i′} for some indices i, i′, or equivalently when j = k. Therefore
E =

∑n−1
u=1

∑u−1
j=0 E(1) = n(n− 1)/2, and then (2.12) gives

n2 E
( 1

F (A)

)
= n2 − n,

as required.
Substitute the definition (2.11) of Cu into expression (2.15) for V to give

V =
n−1∑
u,v=1

u−1∑
j,k=0

v−1∑
ℓ,m=0

E
(
ajaj+n−uakak+n−uaℓaℓ+n−vamam+n−v

)
.

There are four mutually disjoint cases for which the expectation term in the sum V is nonzero.

Case 1: u = v and j = k = ℓ = m. The contribution to V is
∑n−1

u=1

∑u−1
j=0 1 =

∑n−1
u=1 u.

Case 2: u = v and {j, k, ℓ,m} = {i, i, i′, i′} for some indices i ̸= i′. The contribution to V (from 3
symmetrical cases) is

3
n−1∑
u=1

u−1∑
j=0

u−1∑
k=0
k ̸=j

1 = 3
n−1∑
u=1

u(u− 1).

Case 3: u ̸= v and j = k and ℓ = m. The contribution to V is

n−1∑
u=1

n−1∑
v=1
v ̸=u

u−1∑
j=0

v−1∑
ℓ=0

1 =

n−1∑
u=1

n−1∑
v=1
v ̸=u

uv =

( n−1∑
u=1

u

)2

−
n−1∑
u=1

u2.

Case 4: u ̸= v and {j, k} = {i, i + n − v} and {ℓ,m} = {i, i + n − u} for some index i satisfying
0 ≤ i < u+ v − n. The contribution to V (from 4 symmetrical cases) is

4
n−1∑
u=1

n−1∑
v=1
v ̸=u

u+v−n−1∑
j=0

1 = 4

n−1∑
u=1

n−1∑
v=n−u+1

v ̸=u

(u+ v − n) = 4

n−1∑
u=1

u−1∑
w=1

w ̸=2u−n

w,

putting w = u + v − n. The condition w ̸= 2u − n in the inner sum takes effect only when
2u− n ≥ 1, so the contribution for this case equals

4

n−1∑
u=1

u−1∑
w=1

w − 4

n−1∑
u=⌈n+1

2 ⌉
(2u− n) = 2

n−1∑
u=1

u(u− 1)− (n2 − 2n+ In)

by evaluating the sum involving 2u− n separately according to whether n is even or odd.

Sum the contributions to V from the four cases and substitute into (2.13), together with the
relation E = n(n− 1)/2 already calculated, to give

n4Var
( 1

F (A)

)
= 16

n−1∑
u=1

u2 − 16

n−1∑
u=1

u+ 4

( n−1∑
u=1

u

)2

− 4(n2 − 2n+ In)− n2(n− 1)2

=
16

3
n3 − 20n2 +

56

3
n− 2 + 2(−1)n,

as required.
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The calculations in the proof of Theorem 1 follow the general method of Aupetit, Liardet
and Slimane [1, §2], but correct the mistaken conclusion of [1, p.44, l.6] that (in our notation)
n4Var( 1

F (A)) =
8
3n(n− 1)(n+4). The mistake arises from failing to apply the condition r+ s < N

in computing the summation of [1, p.44, l.2], which corresponds in our notation to neglecting the
condition u+ v > n in the analysis of Case 4.

4 The classes Sn and ASn

In this section, we use Proposition 5 to prove Theorem 3 for the class Sn of symmetric binary
sequences and for the class ASn of anti-symmetric binary sequences.

Proof of Theorem 3. By (1.3) and (1.4), the map sending the sequence A = (aj) to the sequence
B = ((−1)jaj) is an involution between S2m and AS2m satisfying F (A) = F (B). It is therefore
sufficient to consider the class Sn.

Let (a0, a1, . . . , an−1) ∈ Sn. By the definition (1.3) of Sn, the aj satisfy the symmetry condition

aj = an−1−j for 0 ≤ j < n. (4.1)

We regard the sequence entries a0, a1, . . . , a⌊n−1
2

⌋ as independent random variables that each take

the values 1 and −1 with probability 1
2 , and the remaining sequence entries as being determined

by (4.1).
Set

Du := 2
∑

0≤j<u−1
2

ajaj+n−u, (4.2)

and use condition (4.1) to rewrite (2.11) as

Cu = Iu +Du,

where the term Iu arises from the product a2(u−1)/2 when u is odd. Substitute for Cu in (2.14) and
expand to give

E =

⌊
n

2

⌋
+ 2

n−1∑
u=1

Iu EDu +
n−1∑
u=1

ED2
u, (4.3)

using the summation identity (2.3). Similarly substitute for Cu and Cv in (2.15) and expand; using
symmetry in u and v, and the summation identity (2.3), we obtain

V =

⌊
n

2

⌋2
+ 4

⌊
n

2

⌋ n−1∑
u=1

Iu EDu + 4
n−1∑
u,v=1

IuIv E
(
DuDv

)
+ 2

⌊
n

2

⌋ n−1∑
u=1

ED2
u

+ 4
n−1∑
u,v=1

Iu E
(
DuD

2
v

)
+

n−1∑
u,v=1

E
(
D2

uD
2
v

)
. (4.4)

We shall use (4.2) to express each of EDu, E
(
DuDv

)
, ED2

u, E
(
DuD

2
v

)
, and E

(
D2

uD
2
v

)
as a sum

of expectation terms of the form E(aj1aj2 . . . aj2r), where 1 ≤ r ≤ 4. In view of the symmetry
condition (4.1), such a term is nonzero exactly when the indices j1, j2, . . . , j2r admit a matching
decomposition, namely a partition into r pairs {j, k} such that those pairs which are not equal
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(j = k) are symmetric (j+ k = n− 1, written as j ∼ k). We shall identify the index sets admitting
a matching decomposition, multiply the resulting expressions by Iu or Iv and sum over u or v in
the range 1 ≤ u, v ≤ n− 1 as appropriate, and then substitute into the forms (4.3) and (4.4) for E
and V to calculate n2 E( 1

F (A)) and n4Var( 1
F (A)) from Proposition 5.

We shall use the observations that, for 1 ≤ u, v ≤ n− 1,

a pair (equal or symmetric) cannot be formed from indices j, j + n− u satisfying 0 ≤ j < u−1
2 ,
(4.5)

j ̸∼ k for indices j, k satisfying 0 ≤ j < u−1
2 and 0 ≤ k < v−1

2 , (4.6)

and

the only pairs that can be formed from indices j, j + n− u, k, k + n− u satisfying

0 ≤ j < k < u−1
2 are k = j + n− u (equal) and j + n− u ∼ k + n− u (symmetric). (4.7)

The sum
∑n−1

u=1 Iu EDu. From (4.2) and (4.5), this sum is

n−1∑
u=1

Iu EDu = 2
n−1∑
u=1

Iu
∑

0≤j<u−1
2

E(ajaj+n−u) = 0. (4.8)

The sum
∑n−1

u,v=1 IuIv E
(
DuDv

)
. From (4.2), this sum equals

4
n−1∑
u,v=1

IuIv
∑

0≤j<u−1
2

∑
0≤k< v−1

2

E(ajaj+n−uakak+n−v).

The indices j, j+n−u, k, k+n−v admit a matching decomposition in two ways, represented
in Cases 1 and 2 below. All other possible arrangements of these four indices into two pairs
are inconsistent with the given ranges for u, v, j, k, either because of a single pairing excluded
by (4.5) or (4.6), or else by combination of two pairings as summarized in Table 1.

Case 1: j = k and j + n− u = k + n− v. This gives j = k and u = v, and the contribution
to the sum is

4
n−1∑
u=1

Iu
∑

0≤j<u−1
2

1 = 4
n−1∑
u=1

Iu

(
u− 1

2

)
= 2

⌊
n

2

⌋⌊
n− 2

2

⌋

using the summation identity (2.4).

Case 2: j = k and j + n− u ∼ k + n− v. This gives j = k = u+v−n−1
2 . These values of j, k

have already been counted as part of Case 1 when u = v, so we impose the constraint
u ̸= v and calculate the additional contribution to the sum from Case 2 as

4 In

n−1∑
u,v=1
u̸=v

IuIv I[u+ v > n].
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Substitute u = 2U + 1 and 2V + 1 to evaluate this additional contribution as

4 In

n−3
2∑

U,V=0
U ̸=V

I[U + V > n−2
2 ] = 4 In

n−3
2∑

U,V=0

I[U + V > n−2
2 ]− 4 In

n−3
2∑

U=0

I[U > n−2
4 ]

= 4 In
(n− 1)(n− 3)

8
− 4 In

⌊
n− 1

4

⌋
.

Table 1: Inconsistent index pairings for the sum
∑n−1

u,v=1 IuIv E
(
DuDv

)
Index pairings Inconsistency from

j = k + n− v, k = j + n− u u+ v = 2n

j = k + n− v, k ∼ j + n− u j = u−1
2 + n−v

2 > u−1
2

j ∼ k + n− v, k = j + n− u k = v−1
2 + n−u

2 > v−1
2

j ∼ k + n− v, k ∼ j + n− u j + k = u−1
2 + v−1

2

Combine Cases 1 and 2 to give

n−1∑
u,v=1

IuIv E
(
DuDv

)
= 2

⌊
n

2

⌋⌊
n− 2

2

⌋
+ 2 In

(
n− 1

2

)(
n− 3

2

)
− 4 In

⌊
n− 1

4

⌋
. (4.9)

The sum
∑n−1

u=1 ED2
u. This sum arises by restricting to u = v in the analysis of the previous sum

(with the IuIv term absent), and so is

n−1∑
u=1

ED2
u = 4

n−1∑
u=1

∑
0≤j<u−1

2

1 = 4
n−1∑
u=1

⌊
u

2

⌋
= 4

⌊
n

2

⌋⌊
n− 1

2

⌋
(4.10)

using the summation identity (2.1).

The sum
∑n−1

u,v=1 Iu E
(
DuD

2
v

)
. From (4.2), this sum equals

8
n−1∑
u,v=1

Iu
∑

0≤j<u−1
2

∑
0≤k,ℓ< v−1

2

E(ajaj+n−uakak+n−vaℓaℓ+n−v).

The contributions from indices k = ℓ involve terms in E(ajaj+n−u), which by (4.5) is zero.
By symmetry in k and ℓ, it is therefore sufficient to take twice the contributions from indices
k < ℓ, namely

16

n−1∑
u,v=1

Iu
∑

0≤j<u−1
2

∑
0≤k<ℓ< v−1

2

E(ajaj+n−uakak+n−vaℓaℓ+n−v).

In order for the indices j, j + n− u, k, k + n− v, ℓ, ℓ+ n− v to admit a matching decompo-
sition, at least one equal pair or one symmetric pair must be formed from the four indices
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k, k + n − v, ℓ, ℓ + n − v. In the given range k < ℓ < v−1
2 , from observation (4.7) either

ℓ = k + n− v (represented in Cases 2 and 3 below) or k + n− v ∼ ℓ+ n− v (represented in
Cases 1 and 4 below). We can now determine all matching decompositions by starting with
each of these two pairs in turn, and identifying all possible arrangements of the four remaining
unpaired indices into two further pairs consistent with the given ranges for u, v, j, k, ℓ. These
arrangements are listed in Cases 1 to 4 below; all other arrangements are inconsistent, either
because of a single pairing excluded by (4.5) or (4.6), or else by combination of two or more
pairings as summarized in Table 2.

Case 1: k+ n− v ∼ ℓ+ n− v and j = k and j + n− u ∼ ℓ. This gives 2v− u = n and j = k
and ℓ = 2v − n− 1− j, and the contribution to the sum is

16 In

n−1∑
v=n+1

2

∑
0≤j< 2v−n−1

2

j> 3v−2n−1
2

1.

Case 2: ℓ = k+ n− v and j = k and j + n− u = ℓ+ n− v. This gives 2v− u = n and j = k
and ℓ = j + n− v, and the contribution to the sum is

16 In

n−1∑
v=n+1

2

∑
0≤j< 3v−2n−1

2

1.

Case 3: ℓ = k + n− v and j = k and j + n− u ∼ ℓ+ n− v. This gives j = k = u+2v−2n−1
2

and ℓ = u−1
2 . These values of j, k, ℓ have already been counted as part of Case 2

when 2v − u = n, so we impose the constraint 2v − u ̸= n and evaluate the additional
contribution to the sum from Case 3 as

16
n−1∑
u,v=1

2v−u̸=n

Iu I[u+ 2v > 2n] I[u < v].

Case 4: k + n− v ∼ ℓ+ n− v and j = k and j + n− u = ℓ. This gives j = k = u+2v−2n−1
2

and ℓ = 2v−u−1
2 , and the contribution to the sum is

16
n−1∑
u,v=1

Iu I[u+ 2v > 2n] I[u > v].

The combined contribution to the sum from Cases 1 and 2 is

16 In

n−1∑
v=n+1

2

∑
0≤j< 2v−n−1

2

j ̸= 3v−2n−1
2

1,

in which the condition j ̸= 3v−2n−1
2 in the inner sum takes effect only when 3v−2n−1

2 is a
non-negative integer. The combined contribution from Cases 1 and 2 therefore equals

16 In

n−1∑
v=n+1

2

2v − n− 1

2
− 16 In

n−1∑
v=⌈ 2n+1

3 ⌉
Iv = 8 In

(
n− 1

2

)(
n− 3

2

)
− 16 In

⌊
n− 1

6

⌋

10



Table 2: Inconsistent index pairings for the sum
∑n−1

u,v=1 Iu E
(
DuD

2
v

)
Index pairings Inconsistency from

ℓ = k + n− v, j = ℓ+ n− v, k = j + n− u u+ 2v = 3n

ℓ = k + n− v, j = ℓ+ n− v, k ∼ j + n− u j = u−1
2 + n− v > u−1

2

ℓ = k + n− v, j ∼ ℓ+ n− v, k = j + n− u ℓ = v−1
2 + 2n−u−v

2 > v−1
2

ℓ = k + n− v, j ∼ ℓ+ n− v, k ∼ j + n− u j + ℓ = u+n−2
2 > u−1

2 + v−1
2

k + n− v ∼ ℓ+ n− v, j = ℓ, k = j + n− u k = ℓ+ n− u > ℓ

k + n− v ∼ ℓ+ n− v, j = ℓ, k ∼ j + n− u k + ℓ = u− 1

using the summation identity (2.10).

The combined additional contribution to the sum from Cases 3 and 4 is

16

n−1∑
u,v=1
u̸=v

2v−u̸=n

Iu I[u+ 2v > 2n] = 16

n−1∑
u,v=1

Iu I[u+ 2v > 2n]− 16

n−1∑
u=⌈ 2n+1

3 ⌉
Iu − 16 In

n−1∑
v=⌈ 3n+1

4 ⌉
1

= 16 · 1
2

⌊
n

2

⌋⌊
n− 2

2

⌋
− 16

(⌊
n

6

⌋
+ I[n mod 6 = 4]

)
− 16In

⌊
n− 1

4

⌋
,

where the first summation is evaluated using the identity (2.6), the second using the identity
(2.10), and the third by considering the cases n mod 4 = 1 and n mod 4 = 3 separately.

Add the contribution from Cases 1 and 2 to the additional contribution from Cases 3 and 4
to obtain

n−1∑
u,v=1

Iu E
(
DuD

2
v

)
= 8 In

(
n− 1

2

)(
n− 3

2

)
+ 8

⌊
n

2

⌋⌊
n− 2

2

⌋
− 16

⌊
n

6

⌋
− 16In

⌊
n− 1

6

⌋
− 16In

⌊
n− 1

4

⌋
− 16 · I[n mod 6 = 4]. (4.11)

The sum
∑n−1

u,v=1 E
(
D2

uD
2
v

)
. From (4.2), this sum equals

16

n−1∑
u,v=1

∑
0≤j,k<u−1

2

∑
0≤ℓ,m< v−1

2

E(ajaj+n−uakak+n−uaℓaℓ+n−vamam+n−v).

We distinguish five mutually disjoint cases.

Case 1: j = k and ℓ = m. The contribution to the sum is

16
n−1∑
u,v=1

∑
0≤j<u−1

2

∑
0≤ℓ< v−1

2

1 = 16

(
n−1∑
u=1

⌊
u

2

⌋)2

= 16

⌊
n

2

⌋2⌊n− 1

2

⌋2
using the summation identity (2.1).
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Case 2: j = k and ℓ ̸= m. By symmetry in ℓ and m, the contribution to the sum is

2 · 16
n−1∑
u,v=1

∑
0≤j<u−1

2

∑
0≤ℓ<m< v−1

2

E(aℓaℓ+n−vamam+n−v),

and the inner sum over ℓ < m is zero because by (4.7) the index ℓ cannot form an equal
or symmetric pair with any of the other three indices ℓ + n − v, m, m + n − v in the
given range ℓ < m < v−1

2 .

Case 3: j ̸= k and ℓ = m. Similarly to Case 2, the contribution to the sum is zero.

Case 4: j ̸= k and ℓ ̸= m and u = v. By symmetry in j, k and in ℓ,m, the contribution to
the sum is

4 · 16
n−1∑
u=1

∑
0≤j<k<u−1

2

∑
0≤ℓ<m<u−1

2

E(ajaj+n−uakak+n−uaℓaℓ+n−uamam+n−u).

If j ̸= ℓ, then by (4.7) the expectation term is zero because the smaller of j, ℓ cannot
form a pair with any of the other seven indices. We may therefore take j = ℓ, and then
by similar reasoning take k = m, so that the contribution to the sum is

64
n−1∑
u=1

∑
0≤j<k<u−1

2

1 = 32
n−1∑
u=1

⌊
u

2

⌋⌊
u− 2

2

⌋
=

64

3

⌊
n

2

⌋(
n− 2

2

)⌈
n− 4

2

⌉

using the summation identity (2.2).

Case 5: j ̸= k and ℓ ̸= m and u ̸= v. By symmetry in u, v and in j, k, the contribution to
the sum is

4 · 16
n−1∑
u,v=1
u<v

∑
0≤j<k<u−1

2

∑
0≤ℓ,m< v−1

2
ℓ̸=m

E(ajaj+n−uakak+n−uaℓaℓ+n−vamam+n−v).

By (4.7), the index j cannot form an equal or symmetric pair with any of the indices
j + n − u, k, k + n − u in the given range j < k < u−1

2 . Furthermore, j cannot form
a symmetric pair with any of the indices ℓ, ℓ + n − v,m,m + n − v in the given ranges
ℓ,m < v−1

2 and j < u−1
2 and u < v. A matching decomposition for the eight indices of

the expectation term therefore requires that j form an equal pair with one of the four
indices ℓ, ℓ+n−v,m,m+n−v. By symmetry in ℓ,m, we may replace the resulting four
contributions to the sum by twice the contribution from j = ℓ and twice the contribution
from j = ℓ+ n− v.

We claim that the contribution from j = ℓ + n − v is zero. To prove the claim, set
j = ℓ + n − v, so that ℓ and k are now constrained via ℓ + n − v < k < u−1

2 and the
remaining six unpaired indices are ℓ + 2n − u − v, k, k + n − u, ℓ,m,m + n − v. It is
straightforward to check that ℓ cannot form an equal or symmetric pair with any of the
three indices ℓ+2n−u−v, k, k+n−u subject to the given constraint ℓ+n−v < k < u−1

2 ,
and therefore by (4.7) the only possible pairing involving ℓ is ℓ = m+n−v. We therefore

12



set ℓ = m + n − v, so that m and k are now constrained via m + 2n − 2v < k < u−1
2

and the remaining four unpaired indices are m+ 3n− u− 2v, k, k + n− u,m. By (4.5),
the indices k, k + n− u cannot form an equal or symmetric pair and so, for a matching
decomposition, m must form an equal or symmetric pair with k or k + n − u. This is
not possible subject to the given constraint m+ 2n− 2v < k < u−1

2 , proving the claim.

The contribution to the sum from Case 5 is therefore twice the contribution from j = ℓ,
namely

128
n−1∑
u,v=1
u<v

∑
0≤j<k<u−1

2

∑
0≤m< v−1

2
m̸=j

E(akak+n−uaj+n−uaj+n−vamam+n−v).

The index k cannot form a symmetric pair with any of the indices k+n−u, j+n−u, j+
n−v,m,m+n−v in the given ranges j < k < u−1

2 and m < v−1
2 and u < v. A matching

decomposition for the six indices of the expectation term therefore requires that k form
an equal pair with one of the four indices j + n − u, j + n − v,m,m + n − v. We now
determine all matching decompositions by starting with each of these four equal pairs in
turn, identifying all possible arrangements of the four remaining unpaired indices into
two further pairs consistent with the given ranges for u, v, j, k,m. These arrangements
are listed in Cases 5a to 5e below. Inconsistent arrangements of indices arising from
combinations of two or more pairings are summarized in Table 3.

Case 5a: k = j + n − u and m = j + n − v and k + n − u ∼ m + n − v. This gives
j = 2u+2v−3n−1

2 and k = 2v−n−1
2 and m = 2u−n−1

2 , and the contribution to the sum
is

128 In

n−1∑
u,v=1
u<v

I[2u+ 2v > 3n] I[2v − u < n].

Case 5b: k = m + n − v and k + n − u ∼ j + n − u and j + n − v = m. This gives
j = 2u+2v−3n−1

2 and k = 2u−2v+n−1
2 and m = 2u−n−1

2 , and the contribution to the
sum is

128 In

n−1∑
u,v=1
u<v

I[2u+ 2v > 3n] I[2v − u > n].

Case 5c: k = j + n − v and m = j + n − u and k + n − u,m + n − v form an equal
or symmetric pair. This gives k = j + n − v and m = j + n − u when the third
pair (formed by k + n − u,m + n − v) is equal; the special case j = 2u+2v−3n−1

2 ,
k = 2u−n−1

2 , m = 2v−n−1
2 is obtained when this pair is symmetric, and so is not

counted again. The contribution to the sum is

128
n−1∑
u,v=1
u<v

∑
j≥0

I[j < 2u+v−2n−1
2 ].

Case 5d: k = j + n − v and m ∼ k + n − u and j + n − u,m + n − v form an equal
or symmetric pair. This gives k = j + n − v and m = u + v − n − 1 − j when the
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third pair is symmetric; the special case j = 2u−n−1
2 , k = 2u−2v+n−1

2 , m = 2v−n−1
2

is obtained when this pair is equal, and is not counted again. The contribution to
the sum is

128
n−1∑
u,v=1
u<v

∑
j≥0

I[2u+v−2n−1
2 < j < u+2v−2n−1

2 ].

Case 5e: k = m and k + n − u ∼ j + n − v and j + n − u,m + n − v form an equal
or symmetric pair. This gives k = m = u + v − n − 1 − j when the third pair is
symmetric; the special case j = 2u−n−1

2 , k = m = 2v−n−1
2 is obtained when this pair

is equal, and is not counted again. The contribution to the sum is

128

n−1∑
u,v=1
u<v

∑
j≥0

I[u+2v−2n−1
2 < j < u+v−n−1

2 ].

Table 3: Inconsistent index pairings for Case 5 of the sum
∑n−1

u,v=1 E
(
D2

uD
2
v

)
Index pairings Inconsistency from

k = j + n− u, m = k + n− u, j + n− v ∼ m+ n− v m = v−1
2 + v−u

2 + n−u
2 > v−1

2

k = j + n− u, m ∼ k + n− u, j + n− v ∼ m+ n− v u = v

k = j + n− u, m = j + n− v, k + n− u = m+ n− v u = v

k = j + n− u, m ∼ j + n− v, k + n− u = m+ n− v k = n−1
2

k = j + n− u, m ∼ j + n− v, k + n− u ∼ m+ n− v u = n

k = m+ n− v, k + n− u ∼ j + n− u, j + n− v ∼ m u = n

k = m+ n− v, k + n− u ∼ j + n− v, j + n− u = m k = n−1
2

k = m+ n− v, k + n− u ∼ j + n− v, j + n− u ∼ m v = n

k = m+ n− v, k + n− u = m u+ v = 2n

k = m+ n− v, k + n− u ∼ m k = u−1
2 + n−v

2 > u−1
2

k = j + n− v, m ∼ j + n− u, k + n− u = m+ n− v m = n−1
2

k = j + n− v, m ∼ j + n− u, k + n− u ∼ m+ n− v v = n

k = j + n− v, m = k + n− u, j + n− u = m+ n− v v = n

k = j + n− v, m = k + n− u, j + n− u ∼ m+ n− v m = n−1
2

k = m, k + n− u ∼ j + n− u, j + n− v ∼ m+ n− v u = v

k = m, k + n− u = m+ n− v u = v

k = m, k + n− u ∼ m+ n− v, j + n− u ∼ j + n− v j = k
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We now calculate the total contribution to the sum from Cases 1 to 5. The combined contri-
bution from Cases 5a and 5b is

128 In

n−1∑
u,v=1
u<v

I[2u+ 2v > 3n] I[2v − u ̸= n] = 128 In

n−1∑
u,v=1
u<v

I[2u+ 2v > 3n]− 128 In

n−1∑
v=⌈ 5n+1

6 ⌉
1.

Since each summand of the sum over u, v is symmetric in u and v, this combined contribution
is

128 · 1
2
In

n−1∑
u,v=1

I[2u+ 2v > 3n]− 64 In

n−1∑
u=⌈ 3n+1

4 ⌉
1− 128 In

n−1∑
v=⌈ 5n+1

6 ⌉
1

= 32 In

(
n− 1

2

)(
n− 3

2

)
− 64 In

⌊
n− 1

4

⌋
− 128 In

⌊
n− 1

6

⌋
.

The combined contribution to the sum from Cases 5c, 5d, and 5e is

128

n−1∑
u,v=1
u<v

∑
j≥0

I[j < u+v−n−1
2 , j ̸= 2u+v−2n−1

2 , j ̸= u+2v−2n−1
2 ]

= 128

n−1∑
u,v=1
u<v

(⌊
u+ v − n

2

⌋
I[u+ v > n]− Iv I[2u+ v > 2n]− Iu I[u+ 2v > 2n]

)
,

which is of the form 128

n−1∑
u,v=1
u<v

su,v where su,v is symmetric in u and v. We calculate this

combined contribution as 64
∑n−1

u,v=1 su,v − 64
∑n−1

u=1 su,u. We have

64
n−1∑
u,v=1

su,v = 64
n−1∑
u,v=1

⌊
u+ v − n

2

⌋
I[u+ v > n]− 128

n−1∑
u,v=1

Iu I[u+ 2v > 2n]

= 64

(
2

3

⌊
n

2

⌋(
n− 2

2

)⌈
n− 4

2

⌉
+

1

2

⌊
n

2

⌋⌊
n− 2

2

⌋)
− 128 · 1

2

⌊
n

2

⌋⌊
n− 2

2

⌋
,

where the second summation is evaluated using the identity (2.6), and the first by substituting
w = u+v−n to obtain 64

∑n−1
u=1

∑u−1
w=1⌊

w
2 ⌋ = 64

∑n−1
u=1⌊

u
2 ⌋⌊

u−1
2 ⌋ from the identity (2.1), then

applying the identity ⌊
u

2

⌋⌊
u− 1

2

⌋
=

⌊
u

2

⌋⌊
u− 2

2

⌋
+ Iu

(
u− 1

2

)
,

and finally using the identities (2.2) and (2.4). We also have

64

n−1∑
u=1

su,u = 64

n−1∑
u=⌈n+1

2 ⌉

⌊
2u− n

2

⌋
− 128

n−1∑
u=⌈ 2n+1

3 ⌉
Iu

= 32

⌊
n

2

⌋⌊
n− 2

2

⌋
− 128

(⌊
n

6

⌋
+ I[n mod 6 = 4]

)
,
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where the first summation is evaluated by considering the cases n even and n odd separately,
and the second using the identity (2.10).

The combined contribution to the sum from Cases 5c, 5d, and 5e is therefore

64
n−1∑
u,v=1

su,v − 64
n−1∑
u=1

su,u

=
128

3

⌊
n

2

⌋(
n− 2

2

)⌈
n− 4

2

⌉
− 64

⌊
n

2

⌋⌊
n− 2

2

⌋
+ 128

⌊
n

6

⌋
+ 128 · I[n mod 6 = 4].

Add the contributions from Case 1, Case 4, Cases 5a/5b, and Cases 5c/5d/5e to obtain

n−1∑
u,v=1

E
(
D2

uD
2
v

)
= 16

⌊
n

2

⌋2⌊n− 1

2

⌋2
+ 64

⌊
n

2

⌋(
n− 2

2

)⌈
n− 4

2

⌉
− 64

⌊
n

2

⌋⌊
n− 2

2

⌋
+ 32 In

(
n− 1

2

)(
n− 3

2

)
− 64 In

⌊
n− 1

4

⌋
− 128 In

⌊
n− 1

6

⌋
+ 128

⌊
n

6

⌋
+ 128 · I[n mod 6 = 4].

(4.12)

We are now ready to determine n2 E( 1
F (A)) and n4Var( 1

F (A)) using Proposition 5, separating

the calculation according to whether n is even or odd. Substitution of (4.8) and (4.10) into (4.3)
gives

E =
1

2
(2n2 − 3n+ In), (4.13)

and then from (2.12) we obtain

n2 E
( 1

F (A)

)
= 2n2 − 3n+

1− (−1)n

2
,

as required. Substitution of (4.8), (4.9), (4.10), (4.11), and (4.12) into (4.4) gives, after simplifica-
tion,

V =


n4 + 5n3 − 207

4
n2 + 76n+ 64

⌊
n

6

⌋
+ 64 · I[n mod 6 = 4] for n even,

n4 + 5n3 − 131

4
n2 +

77

2
n− 128

⌊
n− 1

6

⌋
− 144

⌊
n− 1

4

⌋
− 47

4
for n odd,

and then from (2.13) and (4.13) we find that

n4Var
( 1

F (A)

)
=


32n3 − 216n2 + 304n+ 256

⌊
n

6

⌋
+ 256 · I[n mod 6 = 4] for n even,

32n3 − 144n2 + 160n− 576

⌊
n− 1

4

⌋
− 512

⌊
n− 1

6

⌋
− 48 for n odd,

as required.
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5 The class SSn

In this section, we use Proposition 5 to prove Theorem 2 for the class SSn of skew-symmetric
binary sequences.

Proof of Theorem 2. Wemodify the proof of Theorem 3 to obtain the result. Let (a0, a1, . . . , an−1) ∈
SSn. By the definition (1.2) of SSn, the aj satisfy the skew-symmetry condition

aj = (−1)j+
n−1
2 an−1−j for 0 ≤ j < n. (5.1)

We regard the sequence entries a0, a1, . . . , an−1
2

as independent random variables that each take

the values 1 and −1 with probability 1
2 , and the remaining sequence entries as being determined

by (5.1). Use condition (5.1) to rewrite (2.11) as

Cu = Iu
(
(−1)

n−u
2 +Du

)
.

Substitute for Cu in (2.14), and for Cu and Cv in (2.15), to obtain the expressions

E =
n− 1

2
+ 2

n−1∑
u=1

(−1)
n−u
2 Iu EDu +

n−1∑
u=1

Iu ED2
u, (5.2)

V =

(
n− 1

2

)2

+ 4

(
n− 1

2

) n−1∑
u=1

(−1)
n−u
2 Iu EDu + 4

n−1∑
u,v=1

(−1)
2n−u−v

2 IuIv E
(
DuDv

)
+ 2

(
n− 1

2

) n−1∑
u=1

Iu ED2
u + 4

n−1∑
u,v=1

(−1)
n−u
2 IuIv E

(
DuD

2
v

)
+

n−1∑
u,v=1

IuIv E
(
D2

uD
2
v

)
, (5.3)

noting that (−1)n−uIu = Iu because n is odd here.
We express each of EDu, E

(
DuDv

)
, ED2

u, E
(
DuD

2
v

)
, and E

(
D2

uD
2
v

)
as a sum of expecta-

tion terms of the form E(aj1aj2 . . . aj2r), where 1 ≤ r ≤ 4, and then calculate n2 E( 1
F (A)) and

n4Var( 1
F (A)) from Proposition 5 by substitution into the forms (5.2) and (5.3). In view of the

skew-symmetry condition (5.1), the expectation term E(aj1aj2 . . . aj2r) is nonzero exactly when the
indices j1, j2, . . . , j2r admit a matching decomposition. The index sets admitting a matching de-
composition are identical to those in the proof of Theorem 3; each symmetric index pair {j, k} in

the resulting expectation term introduces an additional multiplicative factor (−1)j+
n−1
2 , by (5.1).

We use the same case analyses in the following calculations as in the proof of Theorem 3,

inserting additional factors Iu, Iv, (−1)
n−u
2 , and (−1)

2n−u−v
2 as appropriate.

The sum
∑n−1

u=1(−1)
n−u
2 Iu EDu. Similarly to (4.8), this sum is zero.

The sum
∑n−1

u,v=1(−1)
2n−u−v

2 IuIv E
(
DuDv

)
. We modify the calculation of

∑n−1
u,v=1 IuIv E

(
DuDv

)
in the proof of Theorem 3. Cases 1 and 2 both receive a multiplicative factor (−1)

2n−u−v
2 IuIv

in place of IuIv. Case 2 receives a further multiplicative factor (−1)j+n−u+n−1
2 = (−1)

v−u
2

because of the symmetric index pair {j + n− u, k+ n− v} with j = u+v−n−1
2 . The resulting

multiplicative factor in both cases is IuIv (using the relation u = v for Case 1), and the sum
is therefore unchanged from (4.9). Since n is odd, expression (4.9) simplifies to give

n−1∑
u,v=1

(−1)
2n−u−v

2 IuIv E
(
DuDv

)
= 4

(
n− 1

2

)(
n− 3

2

)
− 4

⌊
n− 1

4

⌋
.
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The sum
∑n−1

u=1 Iu ED2
u. We modify the calculation of

∑n−1
u=1 ED2

u in the proof of Theorem 3 by
introducing an additional factor Iu, giving

n−1∑
u=1

Iu ED2
u = 4

n−1∑
u=1

Iu

(
u− 1

2

)
= 2

(
n− 1

2

)(
n− 3

2

)
using the summation identity (2.4).

The sum
∑n−1

u,v=1(−1)
n−u
2 IuIv E

(
DuD

2
v

)
. We modify the calculation of

∑n−1
u,v=1 Iu E

(
DuD

2
v

)
in the

proof of Theorem 3. Cases 1 to 4 all receive a multiplicative factor (−1)
n−u
2 IuIv in place of Iu.

The presence of symmetric index pairs introduces further multiplicative factors: in Case 1, a

factor of (−1)(k+n−v)+n−1
2 (−1)(j+n−u)+n−1

2 = (−1)
n−u
2 because of index pairs {k+ n− v, ℓ+

n−v} and {j+n−u, ℓ} with j = k and 2v−u = n; in Case 3, a factor of (−1)(j+n−u)+n−1
2 =

(−1)
2v−u+n−2

2 because of index pair {j + n − u, ℓ + n − v} with j = u+2v−2n−1
2 ; and in Case

4, a factor of (−1)(k+n−v)+n−1
2 = (−1)

u+n−2
2 because of index pair {k+n− v, ℓ+n− v} with

k = u+2v−2n−1
2 .

The resulting multiplicative factors are given in Table 4 (using the relation 2v − u = n to
evaluate Case 2). We see that the calculation differs from that of

∑n−1
u,v=1 Iu E

(
DuD

2
v

)
in the

proof of Theorem 3 only via the introduction of a factor Iv in all four cases.

Table 4: Multiplicative factors in calculation of
∑n−1

u,v=1(−1)
n−u
2 IuIv E

(
DuD

2
v

)
Case Multiplicative factor Evaluates to

1 (−1)
n−u
2 IuIv · (−1)

n−u
2 IuIv

2 (−1)
n−u
2 IuIv IuIv

3 (−1)
n−u
2 IuIv · (−1)

2v−u+n−2
2 IuIv

4 (−1)
n−u
2 IuIv · (−1)

u+n−2
2 IuIv

The combined contribution from Cases 1 and 2 is therefore

16
n−1∑

v=n+1
2

Iv

(
2v − n− 1

2

)
− 16

n−1∑
v=⌈ 2n+1

3 ⌉
Iv = 16

⌊
n− 1

4

⌋⌊
n− 3

4

⌋
− 16

⌊
n− 1

6

⌋

using the summation identities (2.7) and (2.10). The combined additional contribution from
Cases 3 and 4 is

16

n−1∑
u,v=1
u̸=v

2v−u̸=n

IuIv I[u+ 2v > 2n] = 16

n−1∑
u,v=1

IuIv I[u+ 2v > 2n]− 16

n−1∑
u=⌈ 2n+1

3 ⌉
Iu − 16

n−1∑
v=⌈ 3n+1

4 ⌉
Iv

= 16

⌊
n− 1

4

⌋⌊
n− 3

4

⌋
− 16

⌊
n− 1

6

⌋
− 16

⌊
n− 1

8

⌋
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using the summation identities (2.8), (2.10), and (2.9).

Add the contributions from Cases 1 and 2 to the additional contribution from Cases 3 and 4
to obtain

n−1∑
u,v=1

(−1)
n−u
2 IuIv E

(
DuD

2
v

)
= 32

⌊
n− 1

4

⌋⌊
n− 3

4

⌋
− 32

⌊
n− 1

6

⌋
− 16

⌊
n− 1

8

⌋
.

The sum
∑n−1

u,v=1 IuIv E
(
D2

uD
2
v

)
. We modify the calculation of

∑n−1
u,v=1 E

(
D2

uD
2
v

)
in the proof of

Theorem 3. All cases receive a multiplicative factor IuIv in place of 1. The presence of
symmetric index pairs introduces further multiplicative factors: in Case 5a, a factor of

(−1)(k+n−u)+n−1
2 = 1 because of index pair {k + n − u, m + n − v} with k = 2v−n−1

2 ; in

Case 5b, a factor of (−1)(k+n−u)+n−1
2 = 1 because of index pair {k + n − u, j + n − u}

with k = 2u−2v+n−1
2 ; in Case 5d, a factor of (−1)m(−1)j+n−u = 1 because of index pairs

{m, k + n − u} and {j + n − u, m + n − v} with m = u + v − n − 1 − j; and in Case
5e, a factor of (−1)k+n−u(−1)j+n−u = 1 because of index pairs {k + n − u, j + n − v} and
{j + n− u, m+ n− v} with k = u+ v− n− 1− j. Since these further factors all equal 1, we
see that the calculation differs from that of

∑n−1
u,v=1 E

(
DuD

2
v

)
in the proof of Theorem 3 only

via the introduction of a factor IuIv in all cases.

The contribution from Case 1 is therefore

16

(
n−1∑
u=1

Iu

(
u− 1

2

))2

= 4

(
n− 1

2

)2(n− 3

2

)2

using the summation identity (2.4). The contribution from Cases 2 and 3 is zero. The
contribution from Case 4 is

32
n−1∑
u=1

Iu

(
u− 1

2

)(
u− 3

2

)
=

32

3

(
n− 1

2

)(
n− 3

2

)(
n− 5

2

)
using the summation identity (2.5). The contribution from Cases 5a and 5b is

128

n−1∑
u,v=1
u<v

IuIv I[2u+ 2v > 3n] I[2v − u ̸= n]

= 128 · 1
2

n−1∑
u,v=1

IuIv I[2u+ 2v > 3n]− 64
n−1∑

u=⌈ 3n+1
4 ⌉

Iu − 128
n−1∑

v=⌈ 5n+1
6 ⌉

Iv

= 32

⌊
n− 1

4

⌋⌊
n− 5

4

⌋
− 64

⌊
n− 1

8

⌋
− 128

⌊
n− 1

12

⌋
,

where the first summation is evaluated by substituting u = 2U + 1 and v = 2V + 1 and
considering the cases n mod 4 = 1 and n mod 4 = 3 separately, the second using identity (2.9),
and the third using an identity analogous to (2.9). The combined contribution to the sum
from Cases 5c, 5d, and 5e is

128

n−1∑
u,v=1
u<v

(
IuIv

(
u+ v − n− 1

2

)
I[u+ v > n]− IuIv I[2u+ v > 2n]− IuIv I[u+ 2v > 2n]

)
,
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which is of the form 128

n−1∑
u,v=1
u<v

s′u,v where s′u,v is symmetric in u and v. We calculate

64

n−1∑
u,v=1

s′u,v = 64

n−1∑
u,v=1

IuIv

(
u+ v − n− 1

2

)
I[u+ v > n]− 128

n−1∑
u,v=1

IuIv I[u+ 2v > 2n]

= 64 · 1
6

(
n− 1

2

)(
n− 3

2

)(
n− 5

2

)
− 128

⌊
n− 1

4

⌋⌊
n− 3

4

⌋
,

where the first summation is evaluated by substituting w = u+v−n to obtain the expression
64
∑n−1

u=1 Iu
∑u−1

w=1 Iw
(
w−1
2

)
and then using the identities (2.4) and (2.5), and the second using

the identity (2.8); and

64

n−1∑
u=1

s′u,u = 64

n−1∑
u=n+1

2

Iu

(
2u− n− 1

2

)
− 128

n−1∑
u=⌈ 2n+1

3 ⌉
Iu

= 64

⌊
n− 1

4

⌋⌊
n− 3

4

⌋
− 128

⌊
n− 1

6

⌋
,

using the summation identities (2.7) and (2.10). The combined contribution to the sum from
Cases 5c, 5d, and 5e is

64

n−1∑
u,v=1

s′u,v − 64

n−1∑
u=1

s′u,u

=
32

3

(
n− 1

2

)(
n− 3

2

)(
n− 5

2

)
− 192

⌊
n− 1

4

⌋⌊
n− 3

4

⌋
+ 128

⌊
n− 1

6

⌋
.

Add the contributions from Case 1, Case 4, Cases 5a/5b, and Cases 5c/5d/5e to obtain

n−1∑
u,v=1

IuIv E
(
D2

uD
2
v

)
= 4

(
n− 1

2

)2(n− 3

2

)2

+
64

3

(
n− 1

2

)(
n− 3

2

)(
n− 5

2

)
− 192

⌊
n− 1

4

⌋⌊
n− 3

4

⌋
+ 32

⌊
n− 1

4

⌋⌊
n− 5

4

⌋
+ 128

⌊
n− 1

6

⌋
− 64

⌊
n− 1

8

⌋
− 128

⌊
n− 1

12

⌋
.

We now use the calculated expectation expressions to determine n2 E( 1
F (A)) and n4Var( 1

F (A))

using Proposition 5. Substitution into (5.2) gives

E =
1

2
(n2 − 3n+ 2), (5.4)

and then from (2.12) we obtain

n2 E
( 1

F (A)

)
= n2 − 3n+ 2,
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as required. Substitution into (5.3), after separation according to whether n mod 4 = 1 or n mod
4 = 3, gives

V =


1

4
n4 +

7

6
n3 − 75

4
n2 +

151

3
n− 128

⌊
n− 1

8

⌋
− 128

⌊
n− 1

12

⌋
− 33 for n mod 4 = 1,

1

4
n4 +

7

6
n3 − 75

4
n2 +

127

3
n− 128

⌊
n− 1

8

⌋
− 128

⌊
n− 1

12

⌋
− 9 for n mod 4 = 3,

and then from (2.13) and (5.4) we find that

n4Var
( 1

F (A)

)
=

32

3
n3 − 88n2 +

592

3
n− 512

⌊
n− 1

8

⌋
− 512

⌊
n− 1

12

⌋
− 88 + 16(−1)

n−1
2 (n− 3),

as required.
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